Efficient Nd→Yb energy transfer in 0.8CaSiO3-0.2Ca3(PO4)2 eutectic glass

نویسندگان

  • Rolindes Balda
  • Jose Ignacio Peña
  • M. Angeles Arriandiaga
  • Joaquín Fernández
چکیده

In this work we report the study of energy transfer between Nd and Yb 3+ ions in glasses with the 0.8CaSiO3-0.2Ca3(PO4)2 eutectic composition at room temperature by using steady-state and time-resolved laser spectroscopy. The Nd →Yb transfer efficiency obtained from the Nd 3+ lifetimes in the single doped and codoped samples reaches 73% for the highest Nd 3+ concentration. The donor decay curves obtained under pulsed excitation have been used to establish the multipolar nature of the Nd → Yb 3+ transfer process and the energy transfer microparameter. The nonradiative energy transfer is consistent with an electric dipole-dipole interaction mechanism assisted by energy migration among donors. Back transfer from Yb 3+ to Nd 3+ is also observed. ©2010 Optical Society of America OCIS codes: (160.5690) Rare earth doped materials; (300.6280) Spectroscopy; fluorescence and luminescence. References and links 1. J. Llorca, and V. M. Orera, “Directionally solidified eutectic ceramic oxides,” Prog. Mater. Sci. 51(6), 711–809 (2006). 2. J. A. Pardo, J. I. Peña, R. I. Merino, R. Cases, A. Larrea, and V. M. Orera, “Spectroscopic properties of Er and Nd doped glasses with the 0.8CaSiO3–0.2Ca3(PO4)2 eutectic composition,” J. Non-Cryst. Solids 298(1), 23–31 (2002). 3. R. Balda, J. Fernández, I. Iparraguirre, J. Azkargorta, S. García-Revilla, J. I. Peña, R. I. Merino, and V. M. Orera, “Broadband laser tunability of Nd3+ ions in 0.8CaSiO3-0.2Ca3(PO4)2 eutectic glass,” Opt. Express 17(6), 4382– 4387 (2009). 4. M. J. Weber, “Optical properties of Yb and Nd -Yb energy transfer in YAlO3,” Phys. Rev. B 4(9), 3153– 3159 (1971). 5. C. Lurin, C. Parent, G. Le Flem, and P. Hagenmuller, “Energy transfer in a Nd-Yb borate glass,” J. Phys. Chem. Solids 46(9), 1083–1092 (1985). 6. C. Parent, C. Lurin, G. Le Flem, and P. Hagenmuller, “Nd→Yb energy transfer in glasses with composition close to LiLnP14O12 metaphosphate (Ln=La, nd, Yb),” J. Lumin. 36(1), 49–55 (1986). 7. W. Ryba-Romanowski, S. Golab, L. Cichosz, and B. Jezowska-Trzebiatowska, “Influence of temperature and acceptor concentration on energy transfer from Nd toYb and from Yb to Er in tellurite glass,” J. NonCryst. Solids 105(3), 295–302 (1988). 8. F. Batalioto, D. F. Sousa, M. J. V. Bell, R. Lebullenger, A. C. Hernandes, and L. A. O. Nunes, “Optical measurements of Nd/Yb codoped fluorindogallate glasses,” J. Non-Cryst. Solids 273(1-3), 233–238 (2000). 9. D. F. de Sousa, F. Batalioto, M. J. V. Bell, S. L. Oliveira, and L. A. O. Nunes, “Spectroscopy of Nd and Yb codoped fluoroindogallate glasses,” J. Appl. Phys. 90(7), 3308–3313 (2001). 10. D. Jaque, M. O. Ramirez, L. E. Bausá, J. García-Solé, E. Cavalli, A. Speghini, and M. Bettinelli, “Nd→Yb energy transfer in the YAl3(BO3)4 nonlinear laser crystal,” Phys. Rev. B 68(3), 035118 (2003). 11. F. Liégard, J. L. Doualan, R. Moncorgé, and M. Bettinelli, “Nd→Yb energy transfer in a codoped metaphosphate glass as a model for Yb laser operation around 980 nm,” Appl. Phys. B 80(8), 985–991 (2005). 12. R. Balda, J. Fernández, I. Iparraguirre, and M. Al-Saleh, “Spectroscopic study of Nd/Yb in disordered potassium bismuth molybdate laser crystals,” Opt. Mater. 28(11), 1247–1252 (2006). #128191 $15.00 USD Received 10 May 2010; revised 8 Jun 2010; accepted 9 Jun 2010; published 11 Jun 2010 (C) 2010 OSA 7 June 2010 / Vol. 18, No. 13 / OPTICS EXPRESS 13842 13. U. Caldiño, D. Jaque, E. Martín-Rodríguez, M. O. Ramírez, J. García Solé, A. Speghini, and M. Bettinelli, “Nd/Yb resonant energy transfer in the ferroelectric Sr0.6 Ba0.4 Nb2O6 laser crystal,” Phys. Rev. B 77(7), 075121 (2008). 14. Z. Jia, A. Arcangeli, X. Tao, J. Zhang, C. Dong, M. Jiang, L. Bonelli, and M. Tonelli, “Efficient Nd→Yb energy transfer in Nd,Yb:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 083113 (2009). 15. A. Lupei, V. Lupei, A. Ikesue, and C. Gheorghe, “Spectroscopic and energy transfer investigation of Nd/Yb in Y2O3 transparent ceramics,” J. Opt. Soc. Am. B 27(5), 1002–1010 (2010). 16. M. J. Weber, D. C. Ziegler, and C. A. Angell, “Tailoring stimulated emission cross sections of Nd laser glass: Observation of large cross sections for BiCl3 glasses,” J. Appl. Phys. 53(6), 4344–4350 (1982). 17. A. I. Burshtein, “Hopping mechanism of energy transfer,” Sov. Phys. JETP 35, 882–885 (1972).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Site-selective laser spectroscopy of Nd3+ ions in 0.8CaSiO3-0.2Ca3(PO4)2 biocompatible eutectic glass-ceramics.

In this work we report the influence of the crystallization stage of the host matrix on the spectroscopic properties of Nd3+ ions in biocompatible glass-ceramic eutectic rods of composition 0.8CaSiO3-0.2Ca3(PO4)2 doped with 1 and 2 wt% of Nd2O3. The samples were obtained by the laser floating zone technique at different growth rates between 50 and 500 mm/h. The microstructural analysis shows th...

متن کامل

Energy Transfer in Silicate Glass Coactivated with Cerium and Ytterbium

• In a study of the optical properties of coactivated xuminescent glasses, CO c c r^ 2+ ^TJ3 + (1) J r ^,3+ XT,3+(2) , ^mr u ansfer of -nergy trom UO_ to Nd and troiTi Ce to Nd has been /-S 2 PMÜ observed and it has been shown that for both of these ion pairs this energ;' ^Jj^ lntcr(.■h>ln^^ is partly achieved by radiationless transfer mechanisms. In ^^ 3+ 3 + this paper the transfer of energy ...

متن کامل

Role of Yb3+ ions on enhanced ~2.9 μm emission from Ho3+ ions in low phonon oxide glass system

The foremost limitation of an oxide based crystal or glass host to demonstrate mid- infrared emissions is its high phonon energy. It is very difficult to obtain radiative mid-infrared emissions from these hosts which normally relax non-radiatively between closely spaced energy levels of dopant rare earth ions. In this study, an intense mid-infrared emission around 2.9 μm has been perceived from...

متن کامل

Diplatinum alkynyl chromophores as sensitisers for lanthanide luminescence in Pt2Ln2 and Pt2Ln4 (Ln = Eu, Nd, Yb) arrays with acetylide-functionalized bipyridine/phenanthroline.

Incorporation of diplatinum complex Pt2(micro-dppm)2(bpyC[triple bond]C)4 or Pt2(mu-dppm)2(phenC[triple bond]C)4 with Ln(hfac)3(H2O)2 (Ln = Nd, Eu, Yb) gave a series of Pt2Ln2 and Pt2Ln4 bimetallic arrays, in which the excitation of d(Pt) -->pi*(R-C[triple bond]C) MLCT absorption induces sensitisation of lanthanide luminescence through efficient d --> f energy transfer from Pt(II) alkynyl chrom...

متن کامل

Designing Upconversion Nanocrystals Capable of 745 nm Sensitization and 803 nm Emission for Deep-Tissue Imaging.

A crystal design strategy is described that generates hexagonal-phased NaYF4 :Nd/Yb@NaYF4 :Yb/Tm luminescent nanocrystals with the ability to emit light at 803 nm when illuminated at 745 nm. This is accomplished by taking advantage of the large absorption cross-section of Nd(3+) between 720 and 760 nm plus efficient spatial energy transfer and migration through Nd(3+) →Yb(3+) →Yb(3+) →Tm(3+) . ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010